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General	Relativity	is	one	of	the	most	important	theories	of	
modern	physics;	completely	changing	how	we	understand	the	
universe.	We	have	prepared	a	comprehensive	introduction	to	
the	mathematical	and	graphical	tools	used	in	calculations	using	
the	theory	of	General	Relativity,	as	well	as	present	a	specific	
example	of	dropping	a	small	charge	into	a	black	hole	in	order	to	
demonstrate	some	of	the	nuances	of	General	Relativity	that	give	
rise	to	the	Information	Paradox.

The	spacetime	geometry	around	a	black	hole	can	be	described	
with	the	following	metric	tensor.

𝑔ab =

− 1 − 2𝑀/𝑟 0 0 0
0 1 − 2𝑀/𝑟 hi 0 0
0 0 𝑟j 0
0 0 0 𝑟j sinj 𝜃

From	this	second	term	in	our	metric,	we	can	easily	see	that	we	
have	singularities	at	r	=	0	and	r	=	2M.	This	point	at	r	=	2M	is	
called	the	“Event	Horizon”	and	has	some	interesting	properties	
which	we	can	see	by	applying	some	coordinate	
transformations.	

The Schwarzschild Geometry

Describing Space-time
Distances	in	Space-time	can	be	described	using	the	Line	
Element.	For	all	spacetime	geometries,	the	line	element	can	be	
calculated	with	the	following.	

𝑑𝜏j = 𝑔ab𝑑𝑥a𝑑𝑥b

Where	𝑔ab is	the	metric	tensor	describing	the	particular	
spacetime geometry	being	studied.	For	flat,	empty	space,	the	
metric	tensor	is	very	simple.	

𝑔ab =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

For	other	spacetime	geometries,	such	as	the	Schwarzschild	
Geometry,	which	describes	the	spacetime	curvature	around	a	
black	hole,	will	have	more	complicated	metrics.	

Imagine	that	you	are	stationary	some	distance	away	from	a	
black	hole	and	your	friend,	who	began	by	your	side,	begins	to	
fall	in	towards	the	black	hole.	By	switching	to	Rindler
coordinates,	characterized	by	r⟶𝜌, which	describes	the	proper	
distance	to	the	horizon,	and	t	⟶4MG𝜔,	we	can	simplify	our	
Schwarzschild	line	element	to	

d𝜏j = 𝜌j d𝜔j − d𝜌j − d𝑥j − d𝑦j
By	the	relative	sign	difference	between	d𝜔 and	d𝜌 tells	us	that	
"𝜌 and	𝜔 are	radial	hyperbolic	angle	variables	of	an	ordinary	
Minkowski space”	[Susskind].
Applying	a	boost	in	the	𝜌 direction,	as	well	as	rescaling	our	
Rindler time	coordinate	we	can	transform	our	viewpoint	to	our	
free-falling	observer	(FREFOS).	Doing	this,	we	return	to	a	form	
identical	to	Minkowski space!

T	=	𝜌 sinh(𝜔)	,	Z	=	𝜌 cosh(𝜔)	
⟹	d𝜏j = d𝑇j − d𝑍j − d𝑥j − d𝑦j

This	tells	us	that	a	free-falling	observer	will	not	see	the	
spacetime	geometry	of	the	black	hole,	but	rather,		empty,	flat	
spacetime.	So,	what	happened	to	the	event	horizon	we	see	in	
the	FIDOS	point	of	view?	Is	the	event	horizon	a	real	thing	or	
simply	a	construct	of	our	choice	of	coordinates?	

Types of Observers

Applying	yet	another	coordinate	transformation	we	can	resolve	
the	singularity	at	r=2M.	

𝑡 = 𝑣 − 𝑟 − 2𝑀 log
𝑟
2𝑀

− 1
It	is	important	to	notice	that	this	is	not	a	different	geometry,	
but	simply	a	change	in	coordinates,	so	the	same	physical	
properties	still	hold.	By	looking	at	points	where	𝑑𝜏j =	0	we	can	
see	the	paths	that	light	will	follow;	these	are	points	have,	what	
we	call,	null	separation.	
Plotting	these	light	cones	out,	with	𝜌 on	the	horizontal	axis	and	
𝜔 (rindler time) on	the	vertical	axis	we	can	see	that	the	effects	
of	the	event	horizon	are	still	present!

The Physical Horizon

From	the	point	of	a	FIDOS	all	things	falling	into	the	horizon	will	
never	cross	it,	but	instead,	after	a	very	long	time,	approach	the	
surface	a	very	small	distance	above	it,	called	the	“Stretched	
Horizon”.
After	deriving	Maxwell’s	equations	in	General	Relativity,	we	can	
then	represent	the	surface	charge	on	the	horizon	as…

𝜎 =
1
4𝜋𝜌

�𝐸�
����

Taking	a	time	derivative	and	applying	Maxwell’s	equations,	we	
can	make	the	substitution	𝛽 = 𝜌𝐵 as	well	as	imposing	the	
continuity	conditions

4𝜋𝑗𝑦 = 𝜌𝛽� &	4𝜋 ̇𝚥𝑥 = −𝜌𝛽�
we	can	obtain	the	following	relations.

𝛽� = 𝐸� &	𝛽� = −𝐸�
Plugging	this	relation	back	into	our	continuity	conditions	we	
obtain

𝑗� =
1
4𝜋

𝐸�
Which	is	a	variation	of	Ohm’s	Law,	J	=	𝜎E,	where	𝜎 is	the	
conductivity!	Thus,	we	have	shown	that	the	stretched	horizon	
acts	as	an	ohmic	conductor!

The Stretched Horizon

Now	that	we	understand	the	how	the	stretched	horizon	will	
react	to	charge,	let	us	drop	some	point	charge	onto	it	and	see	
what	happens!	We	can	right	the	electric	field	due	to	our	point	
charge	as

𝐸 =
𝑞

4𝜋𝜀�
𝑟 − 𝑟�
𝑟 − 𝑟� �

Then	focusing	only	on	the	z-component,	and applying	the	
following	substituitions	to	give	our	charge	a	boost	toward	the	
black	hole,	we	can	obtain	a	relation	between	𝐸� and 𝐸�.

𝐸� =
�h��

�h�� ����
� ⁄� � , 𝑇 = 𝜌 sinh 𝜔 ,	𝑧 = 𝜌 cosh 𝜔

⟹𝐸� =
i
�
𝐸�

Therefore,	our	equation	for	the	surface	charge	density	becomes
𝜎 = ¡
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�� ¤¥¦§ ¨ h��

�� ¤¥¦§ ¨ ����
� ⁄� �

Letting	𝜔 become	really	large and	rescaling	𝑥© = e¨𝑦©,	our	
surface	charge	density	will	simpify	to

𝜎 = ¡
¢£
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Dropping a Charge

World Lines
The	path	a	particle	traces	through	spacetime	is	called	its	
“World	Line”.	In	terms	of	the	line	element,	there	are	three	
possibilities	for	any	such	world	line:
1. dτj <0	:	Time-like	Separation
2. dτj =	0	:	Null	Separation
3. dτj >0	:	Space-like	Separation
In	order	to	understand	some	spacetime	geometries,	it	can	be	
useful	to	look	at	the	paths	that	light	rays	follow	in	these	
different	geometries.	Any	two	events	who	have	null	separation	
are	such	that	you	can	only	reach	the	other	moving	at	light	
speed.	So,	solving	for	the	equations	of	motion	when	dτj =	0	
gives	us	the	paths	that	light	move	through	space	in	these	
geometries

Abstract

Using	this	definition	of	the	surface	charge	density,	if	we	se	it	
equal	to	 ¡

¯°
(total	charge	over	surface	area)	and	solve	for	𝜔,	we	

can	calculate	the	time	it	takes	for	the	charge	to	spread	over	the	
entire	horizon.	Doing	this	we	obtain

𝜔 = log 2𝑀𝐺 − 𝜌�
𝑡 = 4𝑀𝐺 log 2𝑀𝐺 − 𝜌�

Most	objects	thermalize	on	timescales	proportional	to	a	power	
of	the	entropy.	This	thermalization	time	is	proportional	to	the	
log	of	the	entropy,	making	it	the	fastest	possible	in	the	universe.

Thermalization Time

FIG.	1:	Light	Cones	in	Schwarzschild	Geometry	showing	that	
outgoing	light	rays	inside	r=2M	cannot	escape	and	fall	inward.
Black	=	Radially	outward	rays
Blue	=	Radially	inward	rays
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