Neutrino oscillations and very light dark photons

Gonzalo Alonso-Álvarez

based on [2107.07524] & [2204.04224] with Jim Cline [2301.04152] with Katarina Bleau & Jim Cline

Chicago Workshop on Dark Matter and Neutrino Physics Loyola University Chicago, 9 March 2023

Neutrinos change flavor

Atmospheric neutrinos (Super-Kamiokande)

Image credit: Super-K at Boston U.

Neutrinos change flavor

Solar neutrinos (Sudbury Neutrino Observatory)

Total Rates: Standard Model vs. Experiment Bahcall-Serenelli 2005 [BS05(0P)]

Gonzalo Alonso-Álvarez (McGill)

Neutrino mixing

Neutrino oscillations

Interference in the propagation of mixed states (wave packets)

Gonzalo Alonso-Álvarez (McGill)

Mixing in matter

Dispersion relation of neutrinos in matter (refraction) "Effective potential" $n - 1 = \frac{V}{p}$

The mixing angle differs from the one in vacuum

$$\tan 2\theta_m = \frac{\Delta m^2 \sin 2\theta}{\Delta m^2 \cos 2\theta - 2pV}$$

Resonance when

$$V = \frac{\Delta m^2 \cos 2\theta}{2p}$$

Neutrino mixing in the Sun

In the Sun, ν_e feel an effective potential

$$V(r) = \sqrt{2} G_F n_e(r)$$

Gonzalo Alonso-Álvarez (McGill)

Adiabatic flavor conversions

V changes slowly as the neutrino travels out of the Sun

Mixing in (dark) matter

Effective potential generated by dark matter

Signatures in neutrino experiments & cosmology

Neutrino gauge interactions

Gauge the anomaly-free lepton number symmetries

A' (dark photon) can be dark matter

—> modifies the dispersion relation of neutrinos

$$\omega_{\mathbf{p}_{\nu}}^{2} - \mathbf{p}_{\nu}^{2} = \Pi(\omega_{\mathbf{p}_{\nu}}, \mathbf{p}_{\nu}, A') \longrightarrow V_{a}$$

See [2212.05073] for a recent study in a similar direction

Light bosonic dark matter Prejudice: dark matter has to be heavy, $m_{\rm DM} > {\rm keV}$ Based on 1) thermal production $v_{\rm DM} \sim \frac{1}{m_{\rm DM}}$ and / or 2) fermionic dark matter V<V_{escape} Dark photons 1) can be produced non-thermally and $v_{\rm DM} \ll c$

2) are bosons

Dark photon dark matter

EOM of vector field in an expanding universe:

$$\ddot{A}' + 3H\dot{A}' + m_{A'}^2 A' = 0$$

Arias *et al* [1201.5902]

Harmonic oscillator

Cosmological dark photon field

Early times $H \gg m_{A'}$: overdamped oscillator

Late times $H \ll m_{A'}$: damped oscillations $\rho_{A'} \propto a^{-3}$ (very) cold dark matter!

Gonzalo Alonso-Álvarez (McGill)

Neutrino effective potential

- $U(1)_{L_{\mu}-L_{\tau}}$ gauge interaction: $\mathcal{L} = -g'A'_{\mu} \left[\bar{L}_{\mu}\gamma^{\mu}L_{\mu} - \bar{L}_{\tau}\gamma^{\mu}L_{\tau} \right]$
 - Neutrino dispersion relation:

$$E_i \to \left((\vec{p} \mp g' \vec{A}')^2 + m^2 \right)^{1/2}$$
$$\cong |\vec{p}| \mp g' \hat{p} \cdot \vec{A}' + \frac{m^2}{2p} + O(g'^2 A'^2)$$

• Effective matter potential

$$V = \mp g' \hat{p} \cdot \overrightarrow{A} = \mp g' A'_{\odot} \cos(m_{A'}t)$$

Rest of the talk

Study the impact of the dark photon field on:

- Long baseline neutrino oscillations (T2K)
- Solar adiabatic flavor conversions (SNO + Super-K)

• Sterile neutrino production in the early universe

Long baseline - T2K

Gonzalo Alonso-Álvarez (McGill)

2-flavor description of $P_{\nu_{\mu} \rightarrow \nu_{\mu}}$

Two-state Hamiltonian

• Solve the Schrödinger eq:

• With the Hamiltonian:

• Initial condition: $\Psi(0) = (1, 0)^T$

Two-state Hamiltonian

• Solve the Schrödinger eq:

• With the Hamiltonian:

Gonzalo Alonso-Álvarez (McGill)

Analytic approximations

$$H = E_0 + \frac{\Delta m_{23}^2}{4p} \begin{pmatrix} -\cos 2\theta_{23} & \sin 2\theta_{23} \\ \sin 2\theta_{23} & \cos 2\theta_{23} \end{pmatrix} + g' A'_{\odot} \cos(m_{A'} t) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

• Low frequency $m_{A'} \ll \Delta m_{23}^2 / 4p$:

Adiabatic correction of vacuum parameters

$$\Delta m_{23}^2 \longrightarrow \Delta m_{23}^2 \cdot f(g'A'_{\odot})$$

 $\sin 2\theta_{23} \longrightarrow \sin 2\theta_{23} / f(g'A'_{\odot})$

slowly modulated by $\cos(m_{A'}t)$

Analytic approximations

 $H = E_0 + \frac{\Delta m_{23}^2}{4p} \begin{pmatrix} -\cos 2\theta_{23} & \sin 2\theta_{23} \\ \sin 2\theta_{23} & \cos 2\theta_{23} \end{pmatrix} + g' A'_{\odot} \cos(m_{A'} t) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

• High frequency $m_{A'} \gg \Delta m_{23}^2 / 4p$:

Perturbation theory -> shift in Δm^2

$$\Delta m_{23}^2 \longrightarrow \Delta m_{23}^2 \left(1 - \left(\frac{g' A_{\odot}' \sin 2\theta_{23}}{2m_{A'}} \right)^2 \right)$$

Comparison with T2K data

Observed counts at T2K

Gonzalo Alonso-Álvarez (McGill)

Maximum likelihood test

Vary 4 parameters: Δm_{23}^2 , $\sin^2 \theta_{23}$, $m_{A'}$, $g'A'_{\odot}$

Degeneracies with vacuum oscillation parameters Enlarged allowed region for Δm_{23}^2 , $\sin^2 \theta_{23}$

Gonzalo Alonso-Álvarez (McGill)

Solar experiments - SNO & Super-K

nuclear reactions

 $u_e, \, \nu_\mu, \, \nu_\tau \, \text{detected}$ via CC/NC interactions

Mostly adiabatic conversions (MSW effect) $P_{ee} \approx |\langle \nu_e | \nu_2 \rangle|^2 = \sin^2 \theta_{12} \simeq 0.31$ ν_2 $\nu_{\mu} \ \nu_{\tau}$ ν_e

Hamiltonian

Analytic approximations

$$H = \frac{\Delta m_{12}^2}{4p} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \end{pmatrix} + \begin{pmatrix} \sqrt{2}G_F n_e & 0 \\ 0 & 0 \end{pmatrix} + g' A'_{\odot} \cos(m_{A'} t) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- Still hold locally at each value of R/R_{sun} Low frequency $m_{A'} \ll \Delta m_{12}^2/4p$: multiplicative correction of Δm_{12}^2 , $\sin 2\theta_{12}$
- High frequency $m_{A'} \gg \Delta m_{12}^2 / 4p$: multiplicative shift in Δm_{12}^2

ν_e survival probability along the Sun

Gonzalo Alonso-Álvarez (McGill)

Combined fit to SNO & Super-K

Gonzalo Alonso-Álvarez (McGill)

Parameter space

Vary 4 parameters: Δm_{12}^2 , $\sin^2 \theta_{12}$, $m_{A'}$, $g'A'_{\odot}$

E.g. better compatible with results from KamLAND

Dark photon parameter space

Gonzalo Alonso-Álvarez (McGill)

Sterile neutrinos

Right-handed (sterile) neutrinos to generate masses

Sterile neutrino dark matter

Warm dark matter

 $m_{\nu_s} \gtrsim 1 \,\mathrm{keV}$

Decay into X/Gamma-rays

Gonzalo Alonso-Álvarez (McGill)

Sterile neutrino dark matter

- Warm dark matter
 - $m_{\nu_s} \gtrsim 1 \,\mathrm{keV}$

Decay into X/Gamma-rays

Gonzalo Alonso-Álvarez (McGill)

Resonant production

In the presence of matter effects

Caveat: $V_a < 0$ unless there is a huge lepton asymmetry $L \sim 10^5 B$

(Multi-)resonant production

Gonzalo Alonso-Álvarez (McGill)

(Multi-)resonant production

Gonzalo Alonso-Álvarez (McGill)

Sterile neutrino parameter space

Gonzalo Alonso-Álvarez (McGill)

DM & neutrino workshop, Chicago, 09/03/2023

Conclusions & outlook

- A background of very light $L_{\!\mu} L_{\!\tau}$ dark photons can modify neutrino flavor conversions
- Other things to look at:
 - Full 3-flavour setup in long baseline
 - Directional dependence
 - Reactor experiments
 - Cosmological history

Conclusions & outlook

- A background of very light $L_{\mu}-L_{\tau}$ dark photons can modify neutrino flavor conversions
- Other things to look at:
 - Full 3-flavour setup in long baseline
 - Directional dependence
 - Reactor experiments
 - Cosmological history

DM & neutrino workshop, Chicago, 09/03/2023

Numerical validation

T2K detector response

DM & neutrino workshop, Chicago, 09/03/2023

Standard fit - T2K

Gonzalo Alonso-Álvarez (McGill)