

BSM Targets at a Target-less DUNE

Chicago Workshop on Dark Matter and Neutrino Physics

March 8-10, 2023

Zahra Tabrizi

Neutrino Theory Network (NTN) fellow

Northwestern University

Status of Neutrino Physics in 2022

Super-Kamiokande, Borexino, SNO

atmospheric

accelerator

MBL: Daya Bay, RENO, Double Chooz LBL: KamLAND

IceCube, Super-Kamiokande

T2K, MII

3/10/2023

T2K, MINOS, NOvA

 $\begin{array}{c} {}_{\rm mixing \, angles:}\\ sin^2\theta_{12} @ 4\%\\ sin^2\theta_{13} @ 3\%\\ sin^2\theta_{23} @ 3\% \end{array}$

mass squared differences: $\Delta m^2_{21} @ 3\%$ $|\Delta m^2_{31}| @ 1\%$

Future: DUNE, T2HK , JUNO

- -
- Increase the precision
- CP-phase?
- Mass hierarchy?

Also:

Mass scale? Dirac or Majorana? Sterile?

Zahra Tabrizi, NTN fellow, Northwestern U.

Physics goals of near detectors:

Primary role: Understanding Systematic Uncertainties

- Test SM predictions
- Search for BSM physics

Question:

• How can we fully leverage DUNE to search for New Physics?

• Can DUNE probe compelling new physics beyond the reach of high energy colliders?

Neutrino Experiments as Dark Sector factories!

Credit: Kevin Kelly

The huge fluxes of neutrinos and photos can be used for BSM searches

Heavy Neutral Leptons, Dark Photon, light DM, etc

Berryman et al, PRD (2018) Breitbach et al, JHEP (2022) De Romeri et al, PRD (2019) Magill et al, PRL (2019)

- Light Dark Matter
- Axion-Like Particles
- Light Z'
- SMEFT
- Conclusion

"What is Dark Matter?"

We don't know!

There could be several kinds, making up a whole "dark sector"

"Where is Dark Matter?"

We don't know!

"How is Dark Matter?"

TOM GAULD for NEW SCIENTIST

Photons at the target kinetically produce Dark Photons, which decay into dark matter:

Zahra Tabrizi, NTN fellow, Northwestern U.

DM signal: elastic scattering on electrons

• Challenge: elastic neutrino-electron scattering is a huge background!

De Romeri, Kelly, Machado, PRD (2019)

De Romeri, Kelly, Machado, PRD (2019)

Breitbach, Buonocore, Frugiuele, Kopp, Mittnacht, JHEP (2022)

LDM at a Target-less DUNE

- Impinging protons directly to the dump area;
- Shorter distance between the source point and the detector \rightarrow more DM signal;
- Charged mesons absorbed in the Al beam dump before decay;
- The ν flux decreases by 3 orders of magnitude \rightarrow Only 0.5 ν -e background in 3 mo-0.6 MW!

LDM at a Target-less DUNE

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu arXiv: 2206.06380

Target-less DUNE can probe the parameter space for thermal relic DM in only 3 months!

- Light Dark Matter
- Axion-Like Particles
- Light Z'
- SMEFT
- Conclusion

Axion-Like Particles (ALPs)

- (pseudo)scalars, strongly motivated by theory and cosmology;
- Why is CP conserved in QCD?
 Solution to the strong CP problem (QCD axion);
- DM candidates;

Axion-Like Particles (ALPs)

- (pseudo)scalars, strongly motivated by theory and cosmology;
- Why is CP conserved in QCD?
 Solution to the strong CP problem (QCD axion);
- DM candidates;

D. Cadamuro, 1210.3196 [hep-ph]

Axion-Like Particles (ALPs)

- (pseudo)scalars, strongly motivated by theory and cosmology;
- Why is CP conserved in QCD?
 Solution to the strong CP problem (QCD axion);
- DM candidates;

ALPs at Neutrino Experiments

Credit: Kevin Kelly

Using photons to produce ALPs:

$$\mathcal{L}_{a\gamma\gamma} \supset -rac{1}{4} g_{a\gamma\gamma} a F_{\mu
u} ilde{F}^{\mu
u}$$

ALPs at Target-less DUNE

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu PRL (2021)

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu arXiv: 2206.06380

- The only lab-based constraints!
- Can probe QCD-axion
- 3 months target-less DUNE can do better than 1 yr GAr

ALPs at Target-less DUNE

Brdar, Dutta, Jang, Kim, Shoemaker, <u>ZT</u>, Thompson, Yu arXiv: 2206.06380

- Light Dark Matter
- Axion-Like Particles
- Light Z'
- SMEFT
- Conclusion

Hypothetical gauge boson that appear in many extensions of the standard model

LIGHT HEAVY

- What is its mass?
- Which particles does it talk to?

• Low Energy Experiments

Miranda et al, JHEP (2020) Coloma et al, JHEP (2021) Caddedu et al, JHEP (2021)

Fixed Target Experiments

Gninenko, PLB (2012) Tsai et al, PRL (2021) Bauer et al, JHEP (2018)

Neutrino Trident Searches

Altmannshofer et al, PRL (2014) Ballet et al, JHEP (2019)

Neutrino-Electron Scattering

Harnic et al, JCAP (2012) Lindner et al, JHEP (2018) Ballet et al, JHEP (2019)

• Colliders

BaBar Collaboration, PRL (2014) BaBar Collaboration, PRL (2017)

Cosmology

Escudero et al, JHEP (2019)

What can we learn from neutrino experiments?

$$\mathcal{L}_{Z'}^{\text{matter}} = -g' \big(a_u \, \bar{u} \gamma^\alpha u + a_d \, \bar{d} \gamma^\alpha d + a_e \, \bar{e} \gamma^\alpha e \\ + b_e \, \bar{\nu}_e \gamma^\alpha P_L \nu_e + b_\mu \, \bar{\nu}_\mu \gamma^\alpha P_L \nu_\mu + b_\tau \, \bar{\nu}_\tau \gamma^\alpha P_L \nu_\tau \big) Z'_\alpha$$

The list is far from being exhaustive!

• Low Energy Experiments

Miranda et al, JHEP (2020) Coloma et al, JHEP (2021) Caddedu et al, JHEP (2021)

Fixed Target Experiments

Gninenko, PLB (2012) Tsai et al, PRL (2021) Bauer et al, JHEP (2018)

Neutrino Trident Searches
 Altmannshofer et al, PRL (2014)

Ballet et al, JHEP (2019)

Neutrino-Electron Scattering

Harnic et al, JCAP (2012) Lindner et al, JHEP (2018) Ballet et al, JHEP (2019)

• Colliders

BaBar Collaboration, PRL (2014) BaBar Collaboration, PRL (2017)

Cosmology

Escudero et al, JHEP (2019)

What can we learn from neutrino experiments?

 $\mathcal{L}_{Z'}^{\text{matter}} = -g' \big(a_u \, \bar{u} \gamma^\alpha u + a_d \, \bar{d} \gamma^\alpha d + a_e \, \bar{e} \gamma^\alpha e$ $+ b_e \, \bar{\nu}_e \gamma^\alpha P_L \nu_e + b_\mu \, \bar{\nu}_\mu \gamma^\alpha P_L \nu_\mu + b_\tau \, \bar{\nu}_\tau \gamma^\alpha P_L \nu_\tau \big) Z'_\alpha$

The list is far from being exhaustive!

Neutrino Trident Scattering

Trident rates at LAr Detectors

Coherent (upper) and diffractive (lower) trident events for (anti)neutrino mode

More than 9,000 trident events at DUNE!

Ballett, Hostert, Pascoli, Perez-Gonzalez, ZT and Funchal, PRD (2019)

Light Z': L_{μ} - L_{τ} Model

- Z' only couples to muon and tau, but not to electrons;
- It can explain the muon (g-2) anomaly;
- Can be best probed using tridents;

HE colliders only have

Light Z': L_{μ} - L_{τ} Model

DUNE

$\varepsilon = \frac{eg'}{12\pi^2} \ln \frac{m_{\mu}^2}{m_{\pi}^2}$ ATLAS 10^{-2} -e@DUNE Borexino CMS 9 **BaBar** 4μ Tridents@DUNE CCFR 10^{-3} · DUNE 90% C.L. $\mu^+\mu^-$ trident $(g-2)_{\mu} \pm 2\sigma$ $\nu - e$ scattering $\Delta N_{\rm eff} > 0.5$ 10^{-4} 10^{-2} 10^{-1} 10^{0} 10^{1} $M_{Z'}$ (GeV)

Ballett, Hostert, Pascoli, Perez-Gonzalez, ZT and Funchal, PRD (2019)

The whole g-2 region can be probed by DUNE data!

- Light Dark Matter
- Axion-Like Particles
- Light Z'
- SMEFT
- Conclusion

• Coherent CC and NC forward scattering of neutrinos

• New 4-fermion interactions

- Observable effects at neutrino production/propagation/detection?
- Using "EFT" formalism to "systematically" explore NP beyond the neutrino masses and mixing

Why EFT?

- One consistent framework to probe different aspects of particle interactions;
- Constraints from different low/high experiments can be meaningfully compared;
- Results can be translated into specific new physics models;
- We can probe very heavy particles, often beyond the reach of present colliders, by precisely measuring low-energy observables;

What's the place of neutrino experiments in this program?

EFT ladder

SMEFT: minimal EFT above the weak scale

Zahra Tabrizi, NTN fellow, Northwestern U.

SMEFT at DUNE

- neutrino-electron scattering
- neutrino trident production
- neutrino-nuclei scattering

$$\mathcal{L}_{ ext{wEFT}} \supset -rac{2}{v^2} (\overline{
u}_a \overline{\sigma}_\mu
u_b) \left[g^{abcd}_{LL} (\overline{e}_c \overline{\sigma}_\mu e_d) + g^{abcd}_{LR} (e^c_c \sigma_\mu \overline{e}^c_d)
ight]$$

<u>g=g_{SM}+δg</u>

Neutrino-electron scattering in EFT:

$$\begin{split} \sigma_{\nu_{\mu}e} &= \frac{s}{2\pi v^4} \left[(g_{LL}^{2211})^2 + \frac{1}{3} (g_{LR}^{2211})^2 \right] \approx \frac{m_e E_{\nu}}{\pi v^4} \left[(g_{LL}^{2211})^2 + \frac{1}{3} (g_{LR}^{2211})^2 \right] \\ \sigma_{\overline{\nu}_{\mu}e} &= \frac{s}{2\pi v^4} \left[(g_{LR}^{2211})^2 + \frac{1}{3} (g_{LL}^{2211})^2 \right] \approx \frac{m_e E_{\nu}}{\pi v^4} \left[(g_{LR}^{2211})^2 + \frac{1}{3} (g_{LL}^{2211})^2 \right] \end{split}$$

• We define the following ratios and its deviation from 1:

• Neutrino-electron scattering in EFT:

Neutrino scattering off nuclei in EFT:

• We define the following ratios and its deviation:

$$\begin{aligned} R_{\nu_a N} &\equiv \frac{x \sigma_{\nu_a N \to \nu_a N} + \overline{x} \sigma_{\overline{\nu}_a N \to \overline{\nu}_a N}}{\overline{x} \sigma_{\nu_a N \to e_a^- N} + x \sigma_{\overline{\nu}_a N \to e_a^+ N}} \\ \delta R^i_{\nu_\mu N} &\simeq 2 \frac{g_{L, \text{SM}}^{\nu} \delta g_L^{\nu_\mu} + r_i^{-1} g_{R, \text{SM}}^{\nu} \delta g_R^{\nu_\mu}}{(g_{L, \text{SM}}^{\nu})^2 + r_i^{-1} (g_{R, \text{SM}}^{\nu})^2} \end{aligned}$$

• At DUNE

$$-9.5 \times 10^{-5} < \delta R^{\nu}_{\nu_{\mu}N} < 9.5 \times 10^{-5}, \qquad -1.4 \times 10^{-4} < \delta R^{\overline{\nu}}_{\nu_{\mu}N} < 1.4 \times 10^{-4}$$

Adam Falkowski, Giovanni Grilli di Cortona and ZT, JHEP (2018)

$$\mathcal{L}_{\text{wEFT}} \supset -\frac{2\dot{V}_{ud}}{v^2} (1 + \bar{\epsilon}_L^{de_a}) (\bar{e}_a \overline{\sigma}_\mu \nu_a) (\overline{u} \, \overline{\sigma}^\mu d) - \frac{2}{v^2} (\overline{\nu}_a \overline{\sigma}_\mu \nu_a) \sum_{q=u,d} \left[g_{LL}^{\nu_a q} \, \overline{q} \, \overline{\sigma}^\mu q + g_{LR}^{\nu_a q} (q^c \sigma^\mu \overline{q}^c) \right]$$

Neutrino scattering off nuclei in EFT:

Zahra Tabrizi, NTN fellow, Northwestern U.

Trident production in EFT:

$$\mathcal{L}_{ ext{wEFT}} \supset -rac{2}{v^2} (\overline{
u}_a \overline{\sigma}_\mu
u_b) \left[g^{abcd}_{LL} (\overline{e}_c \overline{\sigma}_\mu e_d) + g^{abcd}_{LR} (e^c_c \sigma_\mu \overline{e}^c_d)
ight]$$

$$\frac{\sigma(\nu_b\gamma^* \to \nu_a\ell_c^-\ell_d^+)}{\sigma_{\rm SM}(\nu_b\gamma^* \to \nu_a\ell_c^-\ell_d^+)} = \frac{\sigma(\overline{\nu}_a\gamma^* \to \nu_b\ell_c^-\ell_d^+)}{\sigma_{\rm SM}(\overline{\nu}_a\gamma^* \to \nu_b\ell_c^-\ell_d^+)} \approx 1 + 2\frac{g_{LL,\rm SM}^{abcd}\delta g_{LL}^{abcd} + g_{LR,\rm SM}^{abcd}\delta g_{LR}^{abcd}}{(g_{LL,\rm SM}^{abcd})^2 + (g_{LR,\rm SM}^{abcd})^2}$$

• We define the following ratios:

$$\begin{split} R_e &\equiv \frac{\sigma(\nu_{\mu} \rightarrow \nu_{\mu} e^- e^+) + \sigma(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu} e^- e^+)}{\sigma(\nu_{\mu} \rightarrow \nu_{\mu} e^- e^+)_{\rm SM} + \sigma(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu} e^- e^+)_{\rm SM}}, \\ R_{\mu} &\equiv \frac{\sigma(\nu_{\mu} \rightarrow \nu_{\mu} \mu^- \mu^+) + \sigma(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu} \mu^- \mu^+)}{\sigma(\nu_{\mu} \rightarrow \nu_{\mu} \mu^- \mu^+)_{\rm SM} + \sigma(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu} \mu^- \mu^+)_{\rm SM}}. \end{split}$$

• Using DUNE we get:

$$\begin{split} R_e &= 1 \pm 0.024, \qquad R_\mu = 1 \pm 0.039 \\ &-0.024 < 2 \frac{g_{LL,\text{SM}}^{2211} \delta g_{LL}^{2211} + g_{LR,\text{SM}}^{2211} \delta g_{LR}^{2211}}{(g_{LL,\text{SM}}^{2211})^2 + (g_{LR,\text{SM}}^{2211})^2} < 0.024 \\ &-0.039 < 2 \frac{g_{LL,\text{SM}}^{2222} \delta g_{LL}^{2222} + g_{LR,\text{SM}}^{2222}}{(g_{LL,\text{SM}}^{2222})^2 + (g_{LR,\text{SM}}^{2222})^2} < 0.039. \end{split}$$

Other relevant experiments:

• Parity-violating Møller scattering probes the electron's axial self-coupling

$$\frac{1}{2v^2}g^{ee}_{AV}\left[-(\overline{e\sigma}_{\mu}e)(\overline{e\sigma}_{\mu}e) + (e^c\sigma_{\mu}\overline{e}^c)(e^c\sigma_{\mu}\overline{e}^c)\right]$$

• The MOLLER collaboration in JLAB will significantly reduce the error by a factor of 5

$$g_{AV}^{ee} = 0.0225 \pm 0.0006$$

Moller collaboration, 1411.4088

Atomic Parity violation (APV):

• The effective couplings of electrons to quarks can be accessed by atomic parity violation (APV)

 $Q_W(Z,N) = -2[(2Z+N)g_{AV}^{eu} + (Z+2N)g_{AV}^{ed}] = Z(1-4s_W^2) - N_{AV}$

$$- rac{1}{2v^2} g^{eq}_{AV} (\overline{e}\,\overline{\sigma}_
ho e - e^c \sigma_
ho \overline{e}^c) (\overline{q}\,\overline{\sigma}^
ho q + q^c \sigma^
ho \overline{q}^c)$$

Experiment	Year	$\Delta \sin^2(heta_W)$
JLab-Qweak (final)		0.0008
JLab-SoLID	2022	0.00057
JLab-MOLLER	2020	0.00026
Mainz-P2	2018	0.0003
$APV(^{225}Ra^+)$		0.0018
$APV(^{213}Ra^+/^{225}Ra^+)$		0.0037
PVES (^{12}C)		0.0007

Erler, Horowitz, Mantry, Souder, Ann. Rev. Nucl. Part. Sci. 64 (2014) 269–298

Future Now

Adam Falkowski, Giovanni Grilli di Cortona and ZT, JHEP (2018)

DUNE will potentially have a dramatic impact on constraining the SMEFT parameter space.

Future Now

Wilson coefficient	$\Delta(ext{current})$	Δ (future)	Δ (future+syst.)	Δ (future w/o DUNE)
δg_L^{We}	3.5	0.37	2.5	3.5
$\delta g_L^{Z\mu} \ \delta g_L^{Zu} \ \delta g_R^{Zu} \ \delta g_R^{Zu} \ \delta g_R^{Zd} \ \delta g_R^{Zd} \ \delta g_R^{Zd} \ \delta g_R^{Wq_1} \ \delta g_R^{Wq_1}$	3.7	0.18	1.1	3.7
δg_L^{Zu}	1.9	0.34	1.4	1.5
δg^{Zu}_R	9.5	0.58	2.3	2.6
δg_L^{Zd}	1.9	0.28	1.5	1.7
δg_R^{Zd}	9.7	1.1	3.9	4.2
$\delta g_R^{Wq_1}$	2.0	0.36	1.7	2.0
$[c_{\ell\ell}]_{1122}$	28	2.6	2.6	28
$[c_{\ell e}]_{2211}$	45	3.1	3.1	45
$[c_{\ell\ell}]_{2222}$	2100	310	310	2100
$[c_{\ell e}]_{2222}$	6300	970	970	6300
$[c_{\ell q}^{(3)}]_{1111} \ [c_{\ell q}^{(3)}]_{2211}$	1.9	0.36	1.7	1.9
$[c_{\ell q}^{(3)}]_{2211}$	12	1.8	10	12
$[c_{\ell q}]_{2211}$	210	3.0	30	210
$[c_{\ell u}]_{2211}$	190	1.2	9.5	190
$[c_{\ell d}]_{2211}$	370	2.4	19	370

1 σ uncertainty Δ in units of 10⁻⁴ on selected SMEFT Wilson coefficient from current and future low-energy precision measurements, assuming only one Wilson coefficient at a time.

• Current:

Falkowski, González-Alonso, Mimouni, JHEP (2017)

• Future w/o DUNE:

Mainz P2, Qweak, SoLID,225Ra+ APV, Moller

Conclusion:

- New generation of neutrino experiments are being built to answer many unknowns in the neutrino sectors;
- We can use the near detectors to directly search for dark sector (e.g.: ALPs, light DM, etc.);
- For several BSM models, near detectors give the best constraints;
- We can remove most of the neutrino background by using the target-less configuration;
- Target-less DUNE can probe the parameter space for thermal relic DM in only 3 months!
- It can also probe the region for QCD axion, and give best lab-based constraint on the parameter space of ALPs;
- We can probe very heavy particles, often beyond the reach of present colliders, by precisely measuring low-energy observables using the EFT formalism.

3/10/2023

Thanks for your attention

3/10/2023

Back up Slides

Production and Detection of Dark Matter

Production and Detection of ALPs

Axion Like Particles (ALPs) at DUNE:

Photon Flux from GEANT4 Simulation

G4 y flux stacked histogram

V. Brdar, B. Dutta, W. Jang, D. Kim, I. Shoemaker, **ZT**, A. Thompson, J. Yu Phys.Rev.Lett. 126 (2021) 20, 201801

Axion Like Particles (ALPs) at DUNE:

• Coherent π^0 production $\nu + A \rightarrow \nu + A + \pi^0$

In GAr:

- We expect ~ 10⁶ NC events;
- Vetoing events with hadronic activity remove ~ 80%;
- A cut on the opening angle removes the rest;

